M.H. – Material Handling

Mergers

PneumaticMerger15

When a company needs to install a merge conveyor, there are a range of variables that make the decision a difficult one.

The need for a merge conveyor in a packaging line is itself enough to indicate a process with a very high degree of complexity and automation throughout.

Choosing the right merge conveyor means taking into account:

  • how it protects the quality of the items;
  • making sure the machines downstream work as intended;
  • the efficiency of the entire packaging line.

It is clear therefore that mistakes could be critical.
The risk of ending up with an ineffective and obsolete packaging line is too high. That is why, whenever a client asks me which model is the best fit, I always start with a thorough analysis of their current operations, needs and expectations.

So, let’s start with a quick overview of these machines, explaining their purpose, their benefits and their limitations.

To start with, there are different types of merge conveyors, but the majority fall into one of two broad categories: mechanical (or buffer) merges and dynamic merges.

Buffer merges

This product is equipped with “gates” at the entry lanes that remain closed until the convergence area is free, at which point they let the items through one after the other.

This is a simple and cost-effective solution that works as long as two conditions are met:

  • the items must be able to withstand the pressure during the buffering phase;
  • the downstream machines must be able to receive the items in a convoy without being triggered to do so.

The first point is related to the integrity of the items, and essentially means that it is appropriate only for boxes, trays and products stacked in tight packaging.

The second point requires greater detail.
As they leave the merge, the items are touching each other, or very close to it, but the speed of the conveyor belt is the same as it would be with products that space out the items with one item’s worth of space between one and the next.
The average productivity of the line doesn’t change, but when the convoy arrives downstream, the machine’s productivity at that moment is doubled.

That is why the machine must be able to manage the flow, otherwise it is necessary to regulate the flow with one conveyor belt to increase the speed and another to decrease it after the merge; however, this solution is naturally bulkier, with two more motors and a more complicated logic controller.

Dynamic merges

When handling items that cannot be buffered for fear of overlap (generally pillow pouch or flowpack packaging) or damage caused by excessive pressure or because downstream machines need the items to arrive at a regular frequency and with a certain distance between one item and the next, then it becomes necessary to install a dynamic system.

A dynamic belt merge is a scalable system consisting of a series of modulating conveyor belts that increase or decrease the speed of the items as they come through, ensuring enough space to avoid a situation where two items reach the convergence point at the same time.

With these devices, the products are always handled one at a time, thereby avoiding having groups of items together and ensuring regular spacing. As the production pace increases, the number of modulators must also increase.

M.H. is an Italian brand with thirty years of experience with handling movement and logistics within production facilities in every sector of industry, with a range of solutions for buffer systems.

When it comes to dynamic merge conveyors, MH’s fastest system isthe HP dynamic system that can reach manufacturing of up to 600 ppm for 150mm flowpacks. Depending on the weight and packaging of the items, it is possible to use up to five phases of conveyors with brushless DC motor and vacuum suction to manage rapid acceleration.

Our wealth of experience means that M.H. is also able to support companies in optimising and streamlining their packaging lines with our innovative and technologically advanced solutions.

The first questions that we have to ask ourselves in these situations are: Are my packaging machines suited to this system? Can my goods be conveyed using this type of merge?


Buffer or mechanical merges are equipped with “gates” at the entry lanes that remain closed until the convergence area is free; once the gates have been opened, these release the products through one after the other.

If you want to find out more about our products or to discover how you can optimise your packaging process

It is necessary to insert a belt merge, which indicates that we’re working with a packaging line with a high degree of complexity and automation.
Process optimization is the goal, improving the packaging machine’s performance. But if you install the “wrong” system, you risk the opposite effect of having to contend with regular unplanned downtime.

When it comes to dynamic belt merges, we at MH have developed the HP dynamic system that can reach manufacturing of 600 ppm for 150mm flowpacks.


This system includes one-by-one timing of the items, created using a multi-belt system with independent power for each of the entry lanes. The machine’s control system enables oversight of the step between the packaging coming out of the system and ensures that the timing occurs without contact, removing the risk of jams, overlaps or damage.

Follow us

Categories

Recenti

Insights, ideas and news
about product handling

Numerous companies I have worked with were not even aware that with a few small changes and minimal investment they too could optimise their processes in a big way.

Today, I want to share with you a few tricks to optimise efficiency on your packaging lines.

So, the three primary tricks to improve efficiency on your packaging lines are:

  • optimizing space, maybe even developing upwards;
  • analyzing the the line as a whole, underestimating the importance of the systems that connect your machinery;
  • investing in technological innovation.

Discover how the MH Solution Scan can transform your production process and enhance your operations today.

In industrial production, buffering systems play a crucial role in ensuring optimal space management and uninterrupted production.

When handling cylindrical items such as bottles, aerosol cans, and vials, it becomes essential to adopt systems specifically designed to manage disparities in production flow across different processing stages. These systems must balance upstream production with downstream demands and adapt agilely to the varying speeds of packaging machines.

The primary goal of these systems is to ensure that every operational phase integrates seamlessly, even in the presence of fluctuating rhythms. This synchronization is fundamental to maintaining the quality and integrity of items throughout the entire production cycle.

Such consistency and balance in the flow minimize the risk of clogs or unexpected delays, ensuring efficiency and resilience that are essential for the success of any packaging line.

Let’s now take a closer look at the features and advantages of the three buffering systems suitable for cylindrical products: serpentine, recirculating, and reservoir.

  • Serpentine Buffer Systems

Serpentine buffer systems represent the most straightforward and cost-effective solution for managing short stoppages

The adjacent arrangement of conveyor belts, moving in opposite directions, facilitates the transfer of products between different tracks, ensuring sufficient space for accumulation. The speed of the belts is adjusted according to the desired spacing between products, guaranteeing an efficient and safe process.

These systems are particularly useful for “emptying” upstream machines, allowing continuous production without interruptions.

  • Recirculating Tables

For greater accumulation capacity and optimal use of available space, recirculation tables offer an advanced solution.

With a central transit belt flanked by wider belts moving in the opposite direction, these systems efficiently manage product accumulation, effectively handling longer production interruptions.

  • Reservoir Tables

When production needs require product accumulation for extended periods or in the presence of frequent format changes, reservoir tables are the ideal solution.

These systems, with their wide and bidirectional configuration, can accommodate a significant quantity of products, effectively functioning as a buffer.

Solutions for Cylindrical Products with Special Requirements

In addition to standard buffering systems, there are products that, due to their unique shapes, require extra care.

Truncated conical products or those with non-standard circular sections often require ingenious solutions to ensure their integrity during accumulation.

For these special items, we implement proactive measures such as polycarbonate containment covers, which effectively prevent the risk of overlapping or part separation. These precautions are essential for maintaining the excellence and precision of the product up to the final stage of the process.

Successful strategy: Choosing the right buffering system for your production line

Buffering systems for cylindrical products are a key component in optimizing production processes. By implementing specific technologies—such as serpentine systems, recirculatiing tables, and reservoir tables—you can not only maximize production capacity but also preserve the integrity of each individual item.

Attention to the specific needs of various product types ensures tailored solutions that effectively address the challenges of modern industry.

In this scenario, making a well-informed and judicious choice of accumulation systems is crucial not only for solving operational problems but also for optimizing your production line, ensuring a rapid and tangible return on investment.

Refining production requires not only the right tools but also the insights necessary to utilize them effectively. This is where our MH Solution Scan comes into play: an in-depth diagnosis to analyze and optimize your packaging line. This advanced technology examines current processes, identifies areas for improvement, and suggests the most suitable solutions to increase efficiency and reduce costs.

The MH Solution Scan is your ally in production management, designed to provide a tailored analysis of your needs and propose a clear action plan. It answers the question: “How can I improve my packaging line?”

Discover how the MH Solution Scan can transform your production process and enhance your operations today.

Serpentine buffer systems are among the most traditional methodologies utilized for managing the accumulation of cylindrical products, distinguished by their ability to facilitate an agile and uninterrupted production flow of vials, cans and bottles.

These systems, comprised of a choreography of conveyor belts arranged side by side and oriented in opposite directions, maximize available space and ensure a smooth transport of products.

Precise management of the conveyor speeds allows for maintaining an appropriate interval between moving items, preventing unwanted accumulations and ensuring a balanced work pace.

These systems are designed to ensure that, in the event of slowdowns, products start to accumulate on the last conveyor belt until a control photocell detects the critical point, triggering a stop. This prevents the risk of congestion and damage, preserving the fluidity of production with a controlled and manageable pause.

Once downstream operations are restored, the conveyor belts restart with renewed energy, accelerating movement to quickly clear any accumulated buildup and swiftly reestablish the usual pace of the line. Thanks to this strategy, production can resume its rhythm with the assurance of a system that minimizes downtime and protects every item in the production chain.

Beyond Savings: Discover the multiple benefits of serpentine buffer systems

The benefits of spiral accumulation systems are numerous and have a direct impact on the packaging line and operational costs. These systems are notable for their disarming simplicity and innate ability to maximize efficiency without excessively burdening the budget.

  • Operational costs optimization

The structural simplicity of serpentine buffer systems translates into a significant economic advantage. Their installation requires a moderate initial investment and, thanks to straightforward maintenance, operational costs remain low over time. Additionally, their durability and reliability ensure a rapid return on investment, making them a cost-effective solution in the long term.

  • Smart management of interruptions

In the event of unexpected shutdowns, serpentine buffer systems demonstrate their strength: their ability to agilely manage these moments reduces the risk of prolonged and costly stoppages. There is no need for drastic measures such as completely halting the line; instead, the situation can be resolved with minimal impact on overall productivity.

  • Operational Agility

One of the most valued features is the ability of serpentine buffer systems to “empty” upstream machines. This allows the machines to keep operating even when part of the line is inactive, preventing delays from accumulating and turning into additional costs for the company. Production can thus continue more smoothly, handling interruptions with great flexibility.

  • Impact on production continuity

The implementation of serpentine buffer systems ensures superior production continuity. These solutions, while simple, support a consistently operational assembly line, maintaining high quality standards for the finished product.

Now that you have explored the strategic advantages of serpentine buffer systems, you may be wondering how to effectively implement them in your production environment. Choosing and optimizing an accumulation system requires a thorough and personalized analysis of your operations, a task that goes beyond simply selecting a technological solution.

At MH, we offer not only our extensive range of serpentine buffer systems but also exclusive access to the “MH Solution Scan.” Our advanced diagnostic tool evaluates your specific production needs, identifying areas for improvement and recommending the most effective implementation for your packaging line.

To discover how the MH Solution Scan can transform your production process, click below.

As I mentioned in a previous video, the need for space is widespread and extremely common. In the last post, I spoke about the benefits of spiral conveyors over traditional conveyors. Today, I’d like to focus on a few alternative solutions.

The bucket elevator belts, intermittent or continuous cleated belts and BAT-Vertical are relevant only in specific situations, and their maintenance costs are higher than those of spiral conveyors; that is why we recommend installing spiral conveyors whenever possible.

If you also have this type of need, do not hesitate to contact us; we are able to create any type of buffer system between packaging machines, paying particular attention to specific production needs, such as optimizing packaging space in a production facility.

I’ve been involved in product conveyor systems for years now, and one of the most frequent recurring challenges is space. Companies often contact me because they need to “find” space so they can optimise their production.

It is critical to start by accurately surveying the site to understand the state of play and evaluating all necessary factors. Only after that can we evaluate where in the production line it is possible and beneficial to install a device that will help to optimise the space, as well as determine the type of device to use.

If you also have this type of need, do not hesitate to contact us; we are able to create any type of buffer system between packaging machines, paying particular attention to specific production needs, such as optimizing packaging space in a production facility.

On this blog, I often discuss packaging process optimization and the machinery that can be installed to achieve this goal. Designing a line from scratch, perhaps even with ample space available, is one thing; intervening on an existing line with its mechanisms already in motion is another.

Is it still possible to optimize the process in these cases? Good question! The answer is yes, but there are multiple paths to take.

Today, I want to outline some solutions to this issue because more and more companies already have a packaging line but need to make it more efficient, both in terms of performance and ergonomics.

Recently, we’ve encountered many with this problem… just think of the contacts we made during Cibus Tec at the end of 2023.

What do these production realities need?

  1. To gain space in facilities where square meters are limited and often fully utilized.
  2. To increase packaging speed.
  3. To free up floor space and develop the process vertically (returning to point 1).
  4. To make the phase from primary to secondary packaging more efficient.
  5. To adapt to changes related to seeking greater sustainability in processes.

What are the solutions in these cases?

T o create overpasses and free up floor space, some technologically advanced solutions can be introduced, such as:

  • Operator passages with gate-opening belts;
  • Retractable systems;
  • Spiral conveyors.

I want to focus on spiral conveyors because, in these cases, I consider them a valid solution.

It’s no coincidence that at Cibus Tec 2023, we presented the SVn-Bare lightweight spiral in collaboration with Ambaflex, specifically designed for agile aerial connections between primary and secondary packaging with significant economic advantage without compromising on quality and achievable peak speeds.

Another “powerful weapon” to improve the efficiency of packaging lines is represented by buffer systems; at MH, we can’t talk about them enough because they can really make a difference.

Buffer systems, for example, allow for:

  • Compensating for operational differences between two machines connected in series;
  • Regularizing the flow and preventing the processing line from constantly stopping;
  • Recovering productivity in the event of micro-stops on downstream machines.

However, integrating a buffer system at a later stage into an existing line is not straightforward; this operation requires significant attention and a series of specific evaluations regarding the performance outcomes to be achieved.

Adaptations to environmentally friendly packaging.

Another highly topical issue leading companies to plan a series of investments to modify their packaging lines is the need to adapt to the use of low-environmental-impact packaging.

When I talk about “low-environmental-impact packaging,” numerous possibilities open up that include solutions aimed at reducing packaging material or actually replacing plastic with paper, cardboard, or compostable material.

In these cases, the packaging process must keep up with progress. And keep in mind that companies will increasingly have to deal with changes imposed by a search for sustainability in processes.

To this end, at M.H., we are continuously investing in research and development of products capable of offering customers innovative and sustainable solutions in line with new market needs and regulatory requirements.

For example, the Sani-Flex hygienic design transport system, our standard for the transport of naked products, is specifically designed to meet stricter regulations; Saniflex takes into account the sanitization needs of some products to help reduce bacterial load during the process.

Another example is our partnership with Intralox for the construction or development of special products such as spiral elevators, ThermoDrive belts, and passive ARB conveyors.

These mentioned are just some of the solutions designed by M.H. to support companies in the process of modernizing their packaging lines.

If you also need to make your lines more functional and efficient, do not hesitate to contact us; we will guide you on a path to optimizing productivity specifically tailored to your needs.